The Port of Hueneme Confined Aquatic Disposal Project: A Unique Partnership for Contaminated Sediment Management

Presented by
Jack Malone, Ph.D.
Steve Cappellino

May 11, 2011
Overview

- Site and project history
- Confined Aquatic Disposal (CAD) concept
- Partnership strategy and cost allocations
- Permitting and design
- Post-construction monitoring
- Lessons learned
- Project benefits
Project Team

• U.S. Navy (USN)
 - Naval Base Ventura County
 - Naval Facilities Engineering Command (NAVFAC) Southwest
• Oxnard Harbor District (OHD)
• U.S. Army Corps of Engineers (USACE), Los Angeles District
• Anchor QEA, L.P.
 - Everest International Consultants, Inc.
 - iLanco Environmental, LLC
Port of Hueneme
Port of Hueneme – Joint Use

Naval Base Ventura County

Oxnard Harbor District
Current Uses

- **USN**
 - Construction Battalion Center
 - Naval Surface Warfare Center
 - Pacific Missile Test Range

- **OHD**
 - Produce import/export
 - Roll On/Roll Off automobile import/export
 - Break bulk/specialty cargo
Multiple Sediment Issues in Harbor

- Federal Channel had accumulated approximately 200,000 cubic meters of mostly clean maintenance material
- USACE had authority to deepen Federal Channel by approximately 1.5 meters
- None of the OHD or USN berths had been dredged in decades, resulting in operational constraints
- Contaminated sediments existed within much of Port of Hueneme Harbor
Sediment Contamination

- Totaled approximately 220,000 cubic meters
- Approximately 60 percent from berths and 40 percent from Federal Channel
- Chemicals of Concern (COCs) include PAHs, PCBs, DDT, and TBT
- Mostly fine sands, silts, and clays
Contaminated Sediment

Naval Base Ventura County

Oxnard Harbor District
Management Alternatives

- Landfill disposal
- Beneficial reuse
- On-site near shore confined disposal facility (CDF)
- Port fill site at Port of Los Angeles (POLA) or Port of Long Beach (POLB)
- On-site CAD
Rationale for CAD Approach

- Provided an on-site solution
- Not tied to other development or funding
- Provided environmental protection
- Provided local beach nourishment
- Allowed for future Port of Hueneme Harbor deepening to advance
- Restored 100 percent use of USN/OHD wharves
- Provided complete solution for all three parties
- Shared resources = cost effective
Construction Sequencing

Step 1: Excavate CAD

Hueneme Beach Nourishment
Construction Sequencing

Step 2: Place Contaminated Sediment into CAD
Construction Sequencing

Step 3: Place Cap Material onto CAD
Port of Hueneme CAD Cross Section

-85' MLLW

-56' MLLW

-46' MLLW

-43' MLLW

Clean Cap

Contaminated Sediments
Funding Strategy

• Challenges
 - Raising funds (total project cost approximately $14 million)
 - Coordinating budget and funding schedules
 - Contractor negotiations and scheduling

• Opportunities
 - All partners had some funds allocated for smaller individual projects
 - Management and staff committed to success
 - Significant project momentum
Cost Sharing Approach

- Break project into components (e.g., CAD cell excavation, USN berths, OHD berths, cap armor placement, long-term monitoring)
- Estimate costs associated with each component
- Assign components to partners based on either ownership or limitations in authority
Cost Sharing Approach

- Fine tune cost components to accommodate secondary cost sharing strategies and funding schedules
 - Financial balancing to make project more equitable among all partners
 - Recognize previous agreements between partners
 - Account for contaminated sediment ownership allocation
Cost Sharing Approach Responsibilities

<table>
<thead>
<tr>
<th>Project Feature</th>
<th>Responsibility</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>USACE</td>
</tr>
<tr>
<td>Project Development</td>
<td></td>
</tr>
<tr>
<td>- CEQA/NEPA Permitting</td>
<td>X</td>
</tr>
<tr>
<td>- Engineering Design</td>
<td>X</td>
</tr>
<tr>
<td>Contracting</td>
<td></td>
</tr>
<tr>
<td>- Contract Management</td>
<td>X</td>
</tr>
<tr>
<td>Construction</td>
<td></td>
</tr>
<tr>
<td>- Equipment Mobilization</td>
<td>X</td>
</tr>
<tr>
<td>- CAD Cell Excavation</td>
<td>X</td>
</tr>
<tr>
<td>- Dredging USN Wharves</td>
<td>X</td>
</tr>
<tr>
<td>- Dredging OHD Wharves</td>
<td></td>
</tr>
<tr>
<td>- Dredging “Hotspots” within O&M Channel</td>
<td>X</td>
</tr>
<tr>
<td>- Capping</td>
<td>X</td>
</tr>
<tr>
<td>- Placing Rock Armor</td>
<td></td>
</tr>
<tr>
<td>- Water Quality Monitoring</td>
<td></td>
</tr>
<tr>
<td>- Sediment Confirmational Sampling</td>
<td></td>
</tr>
<tr>
<td>- Construction Management</td>
<td></td>
</tr>
<tr>
<td>Post-Construction Activities</td>
<td></td>
</tr>
<tr>
<td>- Long-term Monitoring</td>
<td></td>
</tr>
</tbody>
</table>
Contracting Approach

- USACE had existing contract with Manson Construction for O&M dredging in Port Hueneme and Channel Islands Harbor
- Contract modification issued for additional work
- OHD/USACE signed Cost Sharing Agreement
- USACE/USN Cost Sharing Agreement for dredging was already in place
Contracting Approach

• OHD/USN signed Cost Sharing Agreement for CAD construction and long-term monitoring/liability

• All funds transferred to USACE for contracting and management
Permitting Strategy

- Project subject to California Environmental Quality Act (CEQA) and National Environmental Policy Act (NEPA) regulations
 - Joint NEPA/CEQA document to streamline processes
- Also subject to Clean Water Act (CWA) regulations
Permitting Strategy

- Separate regulatory components
 - USACE O&M dredging and disposal component (NEPA)
 - Supplemental NEPA document for CAD disposal
 - USN berth dredging and disposal (NEPA and CWA)
 - OHD berth dredging and disposal (CEQA and CWA)
 - CAD cell construction and beach nourishment (NEPA, CEQA, and CWA)
- Joint USN/OHD application for permits to construct the CAD and dredge respective wharves
Initial Design Elements

- Contaminated sediment removal
 - Total of approximately 220,000 cubic meters
 - Mechanically dredged using clamshell
 - Restricted dredging required for some berths

- CAD cell construction and contaminated dredged material disposal
 - Hydraulic excavation of CAD cell
 - Material pumped to beach
 - Contaminated material placed via bottom-dump scow
Initial Design Elements

- CAD cell cap design
 - Chemical isolation
 - Hydrodynamic modeling
 - Geotechnical (i.e., bulking and settling)
 - Bioturbation
Cap Design Critical Elements

- Ship propeller wash scour from USN destroyers
 - Modeled bottom velocities up to 11.4 feet per second
 - Worst-case assumptions capable of producing greater than 5 feet of scour

- Chemical flux
 - Some aquifers in region experience artesian conditions
 - Final elevation critical to prevent significant upward flux
Project Timeline

- Conceptual design for project completed in April 2007
- Design and permitting completed in August 2008 (16 months from conception)
- Construction began in December 2008
- Construction completed in July 2009
- Approximately 1 million cubic yards of dredging
Monitoring Results

- One year of monitoring completed
 - Hydrographic surveys, sediment cores, sediment chemistry, porewater samples
- CAD cell performing as designed
 - Sufficient cap thickness achieved
 - Contaminant isolation achieved
 - Scour resistance achieved
- Authorized depths restored to USN and OHD berths and to Federal Channel
Lessons Learned

- Commitment to succeed from project partners
 - Managers set the tone for staff
- Leverage existing agreements
 - Streamline legal review and contracting processes
- Internal and external communication is critical throughout process
 - Project team coordination is open and continuous
 - Be proactive in communicating with external stakeholders
Project Benefits

• Recreational: Restored Hueneme Beach
• Operations: Restored full navigation use to Harbor
• Future Growth: Provides clear path for Harbor deepening
• Financial: More than $30 million in benefits achieved for less than $14 million in costs
Biggest Accomplishment – A Successful Model for a Teaming Approach