Identifying Sources of Storm Water Metal Contaminants at Navy Facilities

How Can You Clean It Up If You Don’t Know Where It’s Coming From?

NDIA E2S2
24 May 2012

Chuck Katz
Environmental and Applied Science Branch
Space and Naval Warfare Systems Center Pacific
(619) 553-5332 chuck.katz@navy.mil
PROBLEM:

- Copper and zinc concentrations in storm water samples discharging from Navy facilities typically exceed regulatory benchmarks, limits, or proposed limits.
- Storm water toxicity, primarily caused by copper and zinc, commonly exceeds San Diego thresholds.
- The relative magnitude of copper and zinc sources to storm water discharges is not well known.
- Where and what BMPs should be applied to best mitigate sources.
Data Compilation from 1994 to 2010; n>3000

~51% of Samples Fail
Copper Benchmark
of 64 ug/L

~85% of Samples Fail
Zinc Benchmark
of 117 ug/L

~22% of Samples Fail
Acute Toxicity Threshold
~75% relative to control

Total Suspended Solids

Acute Toxicity (% Survival rel to Control)
Data Compilation from 1998 to 2008; n~62 to 185

~65% of Samples Fail Copper Benchmark 14 ug/L

~25% of Samples Fail Zinc Benchmark 117 ug/L

No toxicity compliance requirement.
Provide Navy facility environmental managers with a storm water management tool that will allow them to:

1. Identify potential sources of metals in Navy facility storm water runoff
2. Quantify relative runoff potential from area sources
3. Quantify the potential reductions expected from BMP mitigation actions

Technology Demonstration Funded by: Naval Environmental Sustainability Development to Integration (NESDI) R&D Program
1. Calibrate and validate WinSLAMM modeling tool by PV & Associates with Navy specific data:
 - Calibrated and validated for a number of urban areas across the United States and Canada
 - Focused on small storm hydrology
 - Evaluates runoff volume, particulate and dissolved pollutants
 - Utilizes national and regional pollutant loading databases
 - Includes built-in modules to evaluate storm water control practices

2. Material leachate testing

3. “Upstream” storm water sampling
WinSLAMM Components

Contaminant Source Loading Data
- Residential
- Institutional
- Commercial
- Industrial
- Freeway
- Other *

Site Characterization Data
- Driveways
- Paved Parking
- Roofs
- Sidewalks
- Streets
- Undeveloped
- Landscaped
- Unpaved Parking
- Other Pervious
- Other Impervious*

Detailed Rainfall Data
- Hourly Data
- Duration
- Intensity

Runoff Coefficient Data
- Particle Loading
- Particle Washoff
- Particle Size

BMP Controls
- Catchbasin Cleaning
- Biofiltration
- Infiltration
- Street Cleaning
- Detention Ponds
- Grass Swales
- Hydrodynamic Devices

Focus is on the Other
(Navy Specific Characteristics)
Calibration Approach

- Collate National Pollutant Discharge Elimination System (NPDES) storm water measurement data from:
 - Multiple outfalls (9)
 - Range in drainage area size (2 - 73 acres)
 - Multiple bases (7)
 - Multiple storm events (10 - 34 /outfall)
 - Two Regions – Navy Region SW, NW

- Collect site characterization data
- Collect local rainfall data
- Compare model to measurements (n~140) and adjust model Contaminant Source File to get best fit
WinSLAMM Navy
Specific Calibration

WinSLAMM
Historical Contaminant Source File (CSF)

Navy Site Specific Data
- Storm water discharge data (multiple bases, outfalls, years)
- Drainage area site characterization
- Local Rainfall

Iterative Calibration

Multiple Outfalls - Multiple Events
1. Run model
2. Compare prediction to observed
3. Readjust CSF to create Navy Best Fit

One Outfall - Multiple Events
1. Run model
2. Compare prediction to observed
3. Adjust CSF for Best Fit

CSF Adjustments
- Leachate data
- Upstream” storm water data

Validation
Apply to additional bases and outfalls

Navy Calibrated WinSLAMM CSF
Site Characterizations

Method Included:

- Site visits
- Aerial photos
- GIS
- Online measurement tools

Lessons Learned:

- Site visit critical
- Break drainage areas into smaller “like” components
- Modified WinSLAMM to handle multiple sub-drainages

Area Output = 0.527 acres
Site Characterizations

Site Characterization: Buildings, Materials, Pavement Slope and Quality
Site Characterizations
Data Issues:

- First Flush vs. Event Meant Concentration Data
- Limited Flow Data
- Limited Total vs. Dissolved Data
- Limited Particle and No Particle Size Data
- Lack of Relationship of Outfall Concentrations with Rainfall Intensity, Volume, Antecedent Dry Period
- Rainfall Locations (NW)
- Regional Differences
• Reasonable model predictions for Region SW
• Coefficients of variation (COV) within ~50%
• Region NW predictions not as good (r^2~0.5) but typically with COV ~60%
Model Results Example

Relative Contributions by Rainfall Total

Model Outcome Example:

- Other Area 5 (20% of Area): 35% runoff, 72% TSS, 81% Cu, 63% Zn
- Paved storage (11% of Area): 19% runoff, 13% Zn

Focus BMP on “Other Impervious Area 5” area
Relative Source Magnitude

Table: Relative Source Magnitude

<table>
<thead>
<tr>
<th>AREA</th>
<th>Area Characteristic Description</th>
<th>Acres</th>
<th>Acre %</th>
<th>Modeled Cu (lbs/ac/yr)</th>
<th>Cu (lbs/yr)</th>
<th>Percentage Cu source</th>
<th>Source/Acreage</th>
</tr>
</thead>
<tbody>
<tr>
<td>AREA1</td>
<td>flat roofs to silty soil</td>
<td>0.55</td>
<td>4%</td>
<td>0.00045</td>
<td>0.000</td>
<td>0.0%</td>
<td>0%</td>
</tr>
<tr>
<td>AREA2</td>
<td>flat roofs directly connected</td>
<td>0.76</td>
<td>6%</td>
<td>0.00879</td>
<td>0.007</td>
<td>0.3%</td>
<td>5%</td>
</tr>
<tr>
<td>AREA3</td>
<td>paved parking directly connected</td>
<td>3.5</td>
<td>28%</td>
<td>0.23833</td>
<td>0.834</td>
<td>40.2%</td>
<td>142%</td>
</tr>
<tr>
<td>AREA4</td>
<td>streets rough asphalt (40 ft wide)</td>
<td>0.77</td>
<td>6%</td>
<td>0.03087</td>
<td>0.024</td>
<td>1.1%</td>
<td>18%</td>
</tr>
<tr>
<td>AREA5</td>
<td>baseball field (silty soil)</td>
<td>1.2</td>
<td>10%</td>
<td>0.00156</td>
<td>0.002</td>
<td>0.1%</td>
<td>1%</td>
</tr>
<tr>
<td>AREA6</td>
<td>silty soil near buildings</td>
<td>1.8</td>
<td>15%</td>
<td>0.00357</td>
<td>0.006</td>
<td>0.3%</td>
<td>2%</td>
</tr>
<tr>
<td>AREA7</td>
<td>mod use concrete pier/laydown/storage/loading dock</td>
<td>1.8</td>
<td>15%</td>
<td>0.33076</td>
<td>0.595</td>
<td>28.7%</td>
<td>197%</td>
</tr>
<tr>
<td>AREA8</td>
<td>heavy use concrete pier/laydown/storage/loading dock</td>
<td>0.9</td>
<td>7%</td>
<td>0.49562</td>
<td>0.446</td>
<td>21.5%</td>
<td>296%</td>
</tr>
<tr>
<td>AREA9</td>
<td>mod use asphalt pier/laydown/storage/loading dock</td>
<td>0.9</td>
<td>7%</td>
<td>0.15200</td>
<td>0.137</td>
<td>6.6%</td>
<td>91%</td>
</tr>
<tr>
<td>AREA10</td>
<td>other imperv areas with galvanized materials</td>
<td>0.2</td>
<td>2%</td>
<td>0.11367</td>
<td>0.023</td>
<td>1.1%</td>
<td>68%</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td>12.38</td>
<td>100%</td>
<td>2.074</td>
<td>100%</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

Use of Relative Source Magnitude for Effective BMP Mitigation
Source Strength Measurements

Standardized method to quantify relative source strength of copper and zinc leaching from common materials
Leachate Rate Results - Cu

<table>
<thead>
<tr>
<th>Photo</th>
<th>Surfaces</th>
<th>Location</th>
<th>Cu Surface Release Rate (µg/ft²)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Galvanized shack, sides</td>
<td>NBK Bangor</td>
<td>164.4</td>
</tr>
<tr>
<td></td>
<td>Wood, treated, green</td>
<td>NBK Bangor</td>
<td>152.7</td>
</tr>
<tr>
<td></td>
<td>Galvanized scaffold stack, laydown area</td>
<td>SUBASE</td>
<td>93.0</td>
</tr>
<tr>
<td></td>
<td>Concrete wall</td>
<td>SSC-PAC</td>
<td>77.1</td>
</tr>
<tr>
<td></td>
<td>Treated wood, green painted.</td>
<td>SUBASE</td>
<td>33.6</td>
</tr>
<tr>
<td></td>
<td>Hose, black, 4" diameter</td>
<td>SUBASE</td>
<td>30.5</td>
</tr>
<tr>
<td></td>
<td>Galvanized Fence, coated black</td>
<td>SSC-PAC</td>
<td>24.4</td>
</tr>
<tr>
<td></td>
<td>Dumpster, green</td>
<td>SSC-PAC</td>
<td>16.4</td>
</tr>
<tr>
<td></td>
<td>Conex box, blue</td>
<td>SUBASE</td>
<td>11.9</td>
</tr>
<tr>
<td></td>
<td>Cable, black, 4" diameter</td>
<td>SUBASE</td>
<td>7.4</td>
</tr>
</tbody>
</table>

Above benchmark

Background <4 µg/ft²
Leachate Rate Results - Zn

<table>
<thead>
<tr>
<th>Photo</th>
<th>Surfaces</th>
<th>Location</th>
<th>Zn Surface Release Rate (µg/ft²)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Galvanized scaffold stack, laydown area</td>
<td>SUBASE</td>
<td>20,123</td>
</tr>
<tr>
<td></td>
<td>Galvanized fence</td>
<td>SUBASE</td>
<td>5,375</td>
</tr>
<tr>
<td></td>
<td>Galvanized rail</td>
<td>SUBASE</td>
<td>5,170</td>
</tr>
<tr>
<td></td>
<td>Galvanized siding, painted, chipped</td>
<td>NBK Bangor</td>
<td>1,824</td>
</tr>
<tr>
<td></td>
<td>Galvanized shack, sides</td>
<td>NBK Bangor</td>
<td>1,411</td>
</tr>
<tr>
<td></td>
<td>Wood, treated, green</td>
<td>NBK Bangor</td>
<td>455</td>
</tr>
<tr>
<td></td>
<td>Building side, yellow, panels</td>
<td>NAS Whidbey</td>
<td>416</td>
</tr>
<tr>
<td></td>
<td>Hose, black, 4" diameter</td>
<td>SUBASE</td>
<td>357</td>
</tr>
<tr>
<td></td>
<td>Shed Roof, green coated metal - First Wash</td>
<td>NAVSTA Everett</td>
<td>353</td>
</tr>
<tr>
<td></td>
<td>Shed Roof, green coated metal - Second Wash</td>
<td>NAVSTA Everett</td>
<td>253</td>
</tr>
</tbody>
</table>

Leachate Rate Results - Zn

- **Background**
 - <50 µg/ft²

Above benchmark
Upstream Sampling

Pier Sampling

- Large differences over short distances associated with materials and operations
- WinSLAMM modified to allow for refined sub-drainage sources

<table>
<thead>
<tr>
<th>SAMPLE ID</th>
<th>Cu (ug/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>P13-3</td>
<td>1132</td>
</tr>
<tr>
<td>P13-14</td>
<td>271</td>
</tr>
<tr>
<td>P13-9</td>
<td>266</td>
</tr>
<tr>
<td>P13-15</td>
<td>111</td>
</tr>
<tr>
<td>P13-13</td>
<td>99</td>
</tr>
<tr>
<td>P13-5</td>
<td>95</td>
</tr>
<tr>
<td>P13-12</td>
<td>74</td>
</tr>
<tr>
<td>P13-4</td>
<td>60</td>
</tr>
<tr>
<td>P13-1</td>
<td>55</td>
</tr>
<tr>
<td>P13-8</td>
<td>50</td>
</tr>
<tr>
<td>P13-10</td>
<td>37</td>
</tr>
<tr>
<td>P13-16</td>
<td>2.9</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SAMPLE ID</th>
<th>Zn (ug/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>P13-16</td>
<td>8916</td>
</tr>
<tr>
<td>P13-3</td>
<td>5908</td>
</tr>
<tr>
<td>P13-14</td>
<td>1489</td>
</tr>
<tr>
<td>P13-9</td>
<td>714</td>
</tr>
<tr>
<td>P13-15</td>
<td>446</td>
</tr>
<tr>
<td>P13-4</td>
<td>422</td>
</tr>
<tr>
<td>P13-13</td>
<td>384</td>
</tr>
<tr>
<td>P13-8</td>
<td>324</td>
</tr>
<tr>
<td>P13-5</td>
<td>314</td>
</tr>
<tr>
<td>P13-1</td>
<td>312</td>
</tr>
<tr>
<td>P13-12</td>
<td>261</td>
</tr>
<tr>
<td>P13-10</td>
<td>104</td>
</tr>
</tbody>
</table>
Summary

- WinSLAMM model calibration shows reasonable success in identifying/quantifying relative source areas at Navy facilities.
- Limited nature of NPDES storm water monitoring data is main source of uncertainty.
- Regional adjustments may be required.
- Leachate and “upstream” source sampling should provide model refinements.
- Implementation pathway likely a more simplified spreadsheet version (output) of the model focused on relative size of validated source strengths.
Acknowledgments

- Robert Pitt, Ryan Bean (co-authors) – University of Alabama
- Ernie Arias, Brandon Swope (co-authors), Joel Guerrero – SSC PAC
- Ryan MacLure, Vicky Ngo, Chantry Davis – NAVFAC SW
- Base Managers from Navy SW and NW Region
- NESDI R&D Program
Questions?
Site Characterizations

- Seattle
- Bangor
- Everett
- Whidbey Is.
- Indian Is.
- San Diego
- NAB
- NASNI
- NBSD
- Pacific Ocean
- San Diego Bay
- Indian Is.
- Whidbey Is.
- Everett
- Bangor

Bangor – detention pond
Observed and Modeled Cu Concentrations and Yields at San Diego Naval Facility Study Areas

<table>
<thead>
<tr>
<th>Study Area</th>
<th>Observed Cu Average Conc. (µg/L)</th>
<th>Modeled Cu Average Conc. (µg/L)</th>
<th>Observed Total Yield (lbs)</th>
<th>Modeled Total Yield (lbs)</th>
<th>Yield Observed/Modeled</th>
</tr>
</thead>
<tbody>
<tr>
<td>Naval Air Base Outfall #26</td>
<td>66</td>
<td>53</td>
<td>8.16</td>
<td>6.22</td>
<td>131%</td>
</tr>
<tr>
<td>Naval Base San Diego Outfall #14 (mixed industrial activities)</td>
<td>69</td>
<td>69</td>
<td>7.47</td>
<td>9.36</td>
<td>80%</td>
</tr>
<tr>
<td>Naval Base San Diego Outfall #1 (ceremonial pier)</td>
<td>137</td>
<td>117</td>
<td>0.26</td>
<td>0.26</td>
<td>100%</td>
</tr>
<tr>
<td>Naval Base San Diego Outfall #13 (heavy industrial pier)</td>
<td>342</td>
<td>288</td>
<td>1.8</td>
<td>1.6</td>
<td>113%</td>
</tr>
<tr>
<td>Naval Amphibious Base (NAB) Outfall #9 (industrial area and ball field)</td>
<td>163</td>
<td>177</td>
<td>0.69</td>
<td>0.99</td>
<td>70%</td>
</tr>
</tbody>
</table>

Observed/Modeled data (Region SW) typically within 50%
Model Results – Region NW

- Less available data
- Not as good model prediction
- Lots of variability
- Regional difference (~ factor of 2)
Observed and Modeled Zn Concentrations and Yields at Northwest Naval Facility Study Areas

<table>
<thead>
<tr>
<th></th>
<th>Total Zn observed average (µg/L)</th>
<th>Total Zn modeled average (µg/L)</th>
<th>Total Zn observed total yield (lbs)</th>
<th>Total Zn modeled total yield (lbs)</th>
<th>Yield Observed/Modeled</th>
</tr>
</thead>
<tbody>
<tr>
<td>Indian Island</td>
<td>150</td>
<td>192</td>
<td>133</td>
<td>127</td>
<td>105%</td>
</tr>
<tr>
<td>Whidbey Island</td>
<td>183</td>
<td>156</td>
<td>1,026</td>
<td>636</td>
<td>161%</td>
</tr>
<tr>
<td>Everett</td>
<td>80</td>
<td>308</td>
<td>257</td>
<td>646</td>
<td>40%</td>
</tr>
<tr>
<td>Sum for all observed events</td>
<td>1,416</td>
<td>1,409</td>
<td>100%</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Observed/Modeled data typically within 60%