MMRP Technology Update

Katherine Kaye
SERDP/ESTCP Support Office, HydroGeoLogic, Inc.
DoD’s Environmental Technology Programs

Science and Technology

Demonstration/ Validation
Program Area Management Structure

Weapons Systems & Platforms

Environmental Restoration

Energy & Water

Resource Conservation & Climate Change

Munitions Response
Today’s Topics

● Munitions Underwater

● Classification Applied to Munitions Response
Three Areas of Focus Underwater

- **Wide Area Assessment**
 - locate areas of concentrated munitions
 - requires high coverage rates and reasonable probability of detection

- **Detailed surveys**
 - locate individual munitions for removal or monitoring
 - requires high probability of detection and good geolocation

- **Enabling technologies**
 - geolocation technologies
 - mobility models
 - remediation technologies
Wide Area Assessment
Geophysical Sensor on Statistical Transects

Proposed Concept of Magnetometer Payload

Geometrics 823
Electronics Payload Magnetometer

Weston
TetraTech Hybrid System

- Vessel mounted LiDAR (80° swath angle)
 - Digital cameras (5 frames per/sec)
- RTK GPS, inertial positioning, and full motion compensation
- Multibeam echosounder, single or dual
- Dual or rotated single sonar scans river bank/shoreline/structure (120°-180° swath angle)
- Individual beams make up swaths (up to > 500 beams)
- Seismic reflection system produces profile view of sediment layers and thicknesses below seabed/bottom
- Sediment layers
- Sidescan sonar produces plan view image of seabed/bottom
- Gradiometer/magnetometer array (MGA) mapping ferrous anomalies

Unexploded ordnance magnetic field
Marine Towed Array

- Demonstrated and Validated System
 - Duck Naval Bombing Range, NC
 - Former Naval Ammunition Depot, Puget Sound
 - Lake Erie
 - Puerto Rico
 - Blossom Point

- 8 Total Field Magnetometers
Classification Applied to Munitions Response
Defense Science Board
UXO Clean-up Cost Break Out

- Site Assessment
- Survey and Mapping
- Vegetation Removal
- Scrap Metal Removal
- UXO Removal & Disposal

Indirect Cost
Direct Cost
Why Discriminate?

- Excavation of suspected UXO drives cost and time
- Less than 4% of excavations are UXO
 - Usually <1%
 - Ex. Camp Butner
 - 7 items out of > 100,000 digs
- Most items are harmless scrap
- Technology can now discriminate UXO from scrap
 - Result of a decade of R&D
 - Proof of concept demonstrated at three real live sites (FUDS)
Evolution to Live Site Demonstrations

- More meaningful results when we validate capabilities of currently available and emerging technologies on real sites
- Supports dialog with regulators and program managers
- Keep standardized test sites as intermediate step between system shakedown tests and live site demonstrations
New EM Technology

- New **UXO-specific EM technologies** have been developed and tested under SERDP & ESTCP

- All digital electronics, measuring complete eddy current decay cycle

- Collect more complete data on the target.
Demonstrations to Date

- **Completed**
 - Former Camp Sibert, AL – simple site, single munitions type
 - Former Camp San Luis Obispo, CA – more difficult, mix of munitions
 - Former Camp Butner, NC – small munitions (37 mm)

- **Ongoing**
 - Mare Island Naval Shipyard, CA – industrial site
 - Pole Mountain, WY – case study in implementation
 - Former Camp Beale, CA – trees, restricted access
 - Site TBD

- **Planned – additional demonstrations in FY12**
Camp Butner

Area A- Artillery Impact Area
Survey Sensor Systems

- Survey Sensors
 - EM61 Cart
 - MetalMapper
Cued Sensor Systems

- Cued Sensors
 - MetalMapper
 - Naval Research Lab Cued EMI array (TEMTADs)
Cued Area with Grid R21 Detail

~4.5 acres
2300 targets
Standard Processing Stream

- The standard processing stream for detection and classification of munitions using geophysical data

1. Data Collection

2. Parameter Estimation (Target Attributes)

3. Classification

Parameters

Non-munitions

Munitions
Dig List Example

<table>
<thead>
<tr>
<th>Rank</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>N/A</td>
<td>Can’t extract reliable parameters</td>
</tr>
<tr>
<td>1</td>
<td>High confidence munition</td>
</tr>
<tr>
<td>2</td>
<td>High confidence munition</td>
</tr>
<tr>
<td>3</td>
<td>High confidence non-munition</td>
</tr>
<tr>
<td>...</td>
<td>Can’t make a decision</td>
</tr>
<tr>
<td>...</td>
<td>High confidence non-munition</td>
</tr>
<tr>
<td>...</td>
<td>High confidence non-munition</td>
</tr>
<tr>
<td>...</td>
<td>High confidence non-munition</td>
</tr>
</tbody>
</table>

Threshold
Performance Evaluation

Receiver Operating Characteristic (ROC) Curve

Desired Performance
- 100% TOI recovered
- 0 non-TOI removed

Coin Flip
- 100% TOI recovered
- 100% non-TOI removed

Classification
- 100% UXO recovered
- 58% non-UXO removed

high confidence non-UXO
Camp Bunter: EM61-MK2 Cart

Number of Clutter Items

Percent Munitions Correctly Identified

- demonstrator threshold
- 100% of munitions correctly identified
San Luis Obispo: EM61-MK2 Cart
TEM TADS Cued Data

Number of Clutter Items

Percent Munitions Correctly Identified

- Demonstrator threshold
- 100% of munitions correctly identified
Implementation Approaches

- Hazard-based dig decision
 - High confidence non-hazardous anomalies remain in the ground
 - Remaining anomalies are dug

- Hazard-based dig protocol
 - High confidence non-hazardous anomalies dug with one UXO tech supervising a team of lower-cost diggers
 - Remaining anomalies are dug with usual procedures (UXO personnel and safety equipment)

Approach would be site dependent and determined by the site team
Breakdown of Nominal $200M FUDS MMRP

2003 DSB UXO Report
Breakdown of Nominal $200M FUDS MMRP

75% Reduction in False Alarms
Breakdown of Nominal $200M FUDS MMRP

90% Reduction in False Alarms

Component Costs ($K)

Site Assessment Survey & Mapping Vegetation Removal Scrap Removal UXO Removal & Disposal Acres Remediated

Thousands of Acres per Year

0 5 10 15 20
0 20 40 60 80 100 120 140 160 180 200

DDES April 2011
Web site
www.serdp-estcp.org

Symposium
November 29 – December 1, 2011
Washington, D.C.