Integrating Sustainability into DoD Acquisition Programs

Paul Yaroschak
Deputy Director, Chemical & Material Risk Management
Office of the Secretary of Defense
The Vision

DoD developers, program managers, and prime contractors analyze alternatives for meeting mission requirements and make informed decisions that result in:

- Sustainable systems regarding energy, water, chemicals/materials, & land use
- Lower Total Ownership Cost

How? Use Life Cycle Impact Assessment
Life Cycle Impact Assessment
ISO 14040

Early Decisions Have Long Term Cost & Health/Environmental Implications

System Boundary

Inputs
- Chemicals & Materials
- Energy
- Water
- Land Use

Outputs
- Air Emissions & Greenhouse Gases
- Toxic Wastes
- Solid Wastes
- Wastewater

Impacts

Raw Materials Acquisition

Development & Manufacturing

Operation & Maintenance

Recycle or Disposal
Life Cycle Cost & Environmental Impacts

Locked-In Early

Acquisition, Technology and Logistics

Percent (%) of Cost

Development
Design
Use /Maintenance

Time

% Cost Locked-In
Cumulative Costs

Most Risks Occur Here

Disposal or Reuse
DoD Sustainability Sectors

- Installations Management
- Military Operations & Training
- Acquisition
Sustainability in DoD Acquisition
From Development through Disposal

PERFORMANCE

LIFE-CYCLE COSTS

HUMAN HEALTH & ENVIRONMENT

High Performance

Low Impacts

Low Costs
We can test & measure this

We need some criteria to weigh alternatives

We can calculate this – Need to do better
What We’ve Learned About LCA in DoD

• Pockets of good practice & results exist
• Some practices stymied
• Sustainability insufficiently considered across DoD
 – Examples: water use, noise, toxic chemical use
• Need better Total Ownership Cost estimates
 – Not all life cycle costs (LCCs) estimated and analyzed
 – Poor transparency for LCC
 – Large O&M costs often passed to operators
• Consistent DoD methodology for analyzing sustainability & related costs does not exist
Challenges

- Where do we get the data to estimate outputs, impacts & life cycle costs?
- What phases in the acquisition process can we reasonably assess sustainability?
- What are the life cycle assessment boundaries?
- Do we assess for whole systems, sub-systems, components?
- There are many players & the acquisition system is complex & changing
- ESOH issues are not high priority
 - Priorities are cost, performance, schedule
What are the Boundaries?

Cradle-to-Grave

- raw material acquisition
- material processing
- manufacturing
- use
- waste management
What are the Boundaries?

Gate-to-Grave

- raw material acquisition
- material processing
- manufacturing
- use
- waste management
What Level to Assess?

• Do we assess for whole systems, components, sub-components?
Current Thinking – Part 1

Focus on 3 key acquisition stages:

- Analysis of Alternatives (AoA)...use an “LCA light” method
- Development...a bit more detailed
- Design...as detailed as data availability will allow
Current Thinking – Part 2

• Focus on 4 key life cycle stages:
 • Research & development
 • Production & deployment
 • Operation & support (O&S)
 • Recycling/demilitarization/disposal

Stages are consistent with OSD O&S Cost Estimating Guide
Current Thinking – Part 3

• Focus on a few key “inputs” and “impacts”

Energy
Chemicals & Materials
Water Use
Land Use

System Boundary

Research & Development
Production & Deployment
Operation & Support
Disposal

Human Health Impact
Cancer & non-cancer toxicity; Noise

Environmental Impact
Air & water emissions; Waste (SW + HW); Land transformation

Mission Impacts
Energy, water, land, & material availability; Noise
Life Cycle Costs
Current Thinking – Part 4

- Score alternatives in AoA phase via a series of questions
- Compare via spider-web diagram
The Way Ahead

• Convene a DoD steering group…done
• Benchmarking study on methods & tools for analyzing sustainability…done
• Collect quantitative case studies…underway
• Adopt method(s) to DoD acquisition process…underway
• Ensure “impact” related costs are included in life cycle cost estimates (per OSD-CAPE guidance)
• Pilot/test the process…learn…refine
• Develop a Military Standard -- “Life Cycle Assessment for Sustainability in Acquisition” …outline done
Formula for Success

LCA Framework + BCA + EO 13514 = MIL-STD for LCA in Acquisition

ISO Standard 14040
LCA General Framework

Business Case Analysis
Required by Law\(^1\)
Sustainability a Required Element

Executive Order on Sustainability
“Advance sustainable acquisition”

Military Standard
Sets a consistent assessment method
LCA is tailored for DoD

DEPARTMENT OF DEFENSE

LIFE CYCLE ASSESSMENT PROCESS FOR SUSTAINABILITY IN DOD ACQUISITIONS

Not for distribution outside the DoD Sustainability in Acquisition Working Group.
Questions & Discussion
Two Major Components of LCA

• Life Cycle Inventory (LCI)
 – Accounting for inputs and outputs of system

• Life Cycle Impact Assessment (LCIA)
 – Translates LCI into HH&E impacts
 – Used for comparing systems/components
DoD Acquisition Process

- Materiel Development Decision precedes entry into any phase of the acquisition process
- PDR = Preliminary Design Review CDR = Critical Design Review
- FRP = Full Rate Production
Spider-web Diagram
Possible Methods to Weigh/Score Outputs

• Stakeholder weighting
 • Example: Is energy or waters use more important (sensitive) for a specific system

• Use of spider-web diagrams

• Use of Data Envelope Analysis (DEA)
 • Also called frontier analysis
 • Used in operations research & investing (portfolio theory)
 • Runs a series of optimization calculations…finds most efficient alternatives as compared to all others
DoD Systems Sustainability
Example of a Cross-Cutting Risk & Cost Factor
• We did a worldwide benchmarking study
• Developed 5 types of physical, chemical, toxicity data needed to assess risk
• Scope of data needed would depend on life cycle use & exposures for a specific system
• Data is tied to phases in acquisition process